782 research outputs found

    An implantable multi-channel temperature transmitter

    Get PDF
    Implantable multi-channel temperature transmitte

    Junior Faculty Engagement at iSchools: Personal Experience during the First Several Years

    Get PDF
    This roundtable discussion will explore how junior faculty at iSchools have been able to embed their research, teaching, and service activities within their schools, the larger institutions, and broader communities. The session will also focus on the ways in which junior faculty have received guidance in their roles--from the job search through the first several years in a tenure-track position. Roundtable leaders represent a variety of institutions and experiences--as faculty at the University of Illinois at Urbana-Champaign [WJM], the University of Maryland [SP], the University of North Carolina at Chapel Hill [PME], and the University of Texas at Austin [MW], and with doctoral-level preparation at the University of North Carolina at Chapel Hill [WJM, MW], the University of Toronto [SP], and the University of Washington [PME]. While the annual junior faculty mentoring event at the iConference specifically targets junior faculty as participants, this roundtable session offers a more inclusive environment for the discussion of this topic, specifically engaging doctoral students and senior faculty as well as their junior colleagues

    Driving in ZZ Ceti stars - Problem solved?

    Full text link
    There is a fairly tight correlation between the pulsation periods and effective temperatures of ZZ Ceti stars (cooler stars have longer periods). This seems to fit the theoretical picture, where driving occurs in the partial ionization zone, which lies deeper and deeper within the star as it cools. It is reasonable to assume that the pulsation periods should be related to the thermal timescale in the region where driving occurs. As that region sinks further down below the surface, that thermal timescale increases. Assuming this connection, the pulsation periods could provide an additional way to determine effective temperatures, independent of spectroscopy. We explore this idea and find that in practice, things are not so simple.Comment: 4 pages, 3 figure

    Regular expressions as violin bowing patterns

    Get PDF
    String players spend a significant amount of practice time creating and learning bowings. These may be indicated in the music using up-bow and down-bow symbols, but those traditional notations do not capture the complex bowing patterns that are latent within the music. Regular expressions, a mathematical notation for a simple class of formal languages, can describe precisely the bowing patterns that commonly arise in string music. A software tool based on regular expressions enables performers to search for passages that can be handled with similar bowings, and to edit them consistently. A computer-based music editor incorporating bowing patterns has been implemented, using Lilypond to typeset the music. Our approach has been evaluated by using the editor to study ten movements from six violin sonatas by W. A. Mozart. Our experience shows that the editor is successful at finding passages and inserting bowings; that relatively complex patterns occur a number of times; and that the bowings can be inserted automatically and consistently

    Asteroseismology of the Kepler V777 Her variable white dwarf with fully evolutionary models

    Full text link
    DBV stars are pulsating white dwarfs with atmospheres rich in He. Asteroseismology of DBV stars can provide valuable clues about the origin, structure and evolution of hydrogen-deficient white dwarfs, and may allow to study neutrino and axion physics. Recently, a new DBV star, KIC 8626021, has been discovered in the field of the \emph{Kepler} spacecraft. It is expected that further monitoring of this star in the next years will enable astronomers to determine its detailed asteroseismic profile. We perform an asteroseismological analysis of KIC 8626021 on the basis of fully evolutionary DB white-dwarf models. We employ a complete set of evolutionary DB white-dwarf structures covering a wide range of effective temperatures and stellar masses. They have been obtained on the basis of a complete treatment of the evolutionary history of progenitors stars. We compute g-mode adiabatic pulsation periods for this set of models and compare them with the pulsation properties exhibited by KIC 8626021. On the basis of the mean period spacing of the star, we found that the stellar mass should be substantially larger than spectroscopy indicates. From period-to-period fits we found an asteroseismological model characterized by an effective temperature much higher than the spectroscopic estimate. In agreement with a recent asteroseismological analysis of this star by other authors, we conclude that KIC 8626021 is located near the blue edge of the DBV instability strip, contrarily to spectroscopic predictions. We also conclude that the mass of KIC 8626021 should be substantially larger than thought.Comment: 7 pages, 5 figures, 3 tables. To be published in Astronomy and Astrophysic

    Quantitative measurement by telemetry of ovulation and oviposition in the fowl

    Get PDF
    Radio telemetry used to determine body temperature cycles in fowl and its relation to ovulation and ovipositio

    Element-by-element factorization algorithms for heat conduction

    Get PDF
    Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems

    White dwarf envelopes: further results of a non-local model of convection

    Full text link
    We present results of a fully non-local model of convection for white dwarf envelopes. We show that this model is able to reproduce the results of numerical simulations for convective efficiencies ranging from very inefficient to moderately efficient; this agreement is made more impressive given that no closure parameters have been adjusted in going from the previously reported case of A-stars to the present case of white dwarfs; for comparison, in order to match the peak convective flux found in numerical simulations for both the white dwarf envelopes discussed in this paper and the A-star envelopes discussed in our previous work requires changing the mixing length parameter of commonly used local models by a factor of 4. We also examine in detail the overshooting at the base of the convection zone, both in terms of the convective flux and in terms of the velocity field: we find that the flux overshoots by approximately 1.25 H_P and the velocity by approximately 2.5 H_P. Due to the large amount of overshooting found at the base of the convection zone the new model predicts the mixed region of white dwarf envelopes to contain at least 10 times more mass than local mixing length theory (MLT) models having similar photospheric temperature structures. This result is consistent with the upper limit given by numerical simulations which predict an even larger amount of mass to be mixed by convective overshooting. Finally, we attempt to parametrise some of our results in terms of local MLT-based models, insofar as is possible given the limitations of MLTComment: Accepted for publication in MNRAS; 11 pages, 5 figures, 3 table

    White Dwarfs In Ngc6397 And M4: Constraints On The Physics Of Crystallization

    Get PDF
    We explore the physics of crystallization in the dense Coulomb plasma of the deep interiors of white dwarf stars using the color-magnitude diagram and luminosity function constructed from Hubble Space Telescope photometry of the globular cluster M 4 and compare it with our results for proper motion cleaned Hubble Space Telescope photometry of the globular cluster NGC 6397. We demonstrate that the data are consistent with a binary mixture of carbon and oxygen crystallizing at a value of Gamma higher than the theoretical value for a One Component Plasma (OCP). We show that this result is in line with the latest Molecular Dynamics simulations for binary mixtures of C/O. We discuss implications for future work.Astronom
    corecore